Graph
Theory

1.1 Graphs

A graph is a pair G= (V, E) where V is a set called vertex set and E is a set of unordered pairs in V. E is called the edge set. VCG) = vertex set of G E(G) = edge set of G We will write (u, v) for the edge {u, v} (v,u) 1G = V(G) e(G) = E(G) Remark: sometimes we will have multiple edges between u and v In that case, G is a multigraph We will sometimes have loops which are edge (v,v)A simple graph is one without loops and multiple edges. Def. - u, v & VCG1) are called adjacent if (u, v) & ECG) -An edge e GECG) is incident to v∈VCG) of vGe -Edges e,e' EECG) are incident if ene' + of

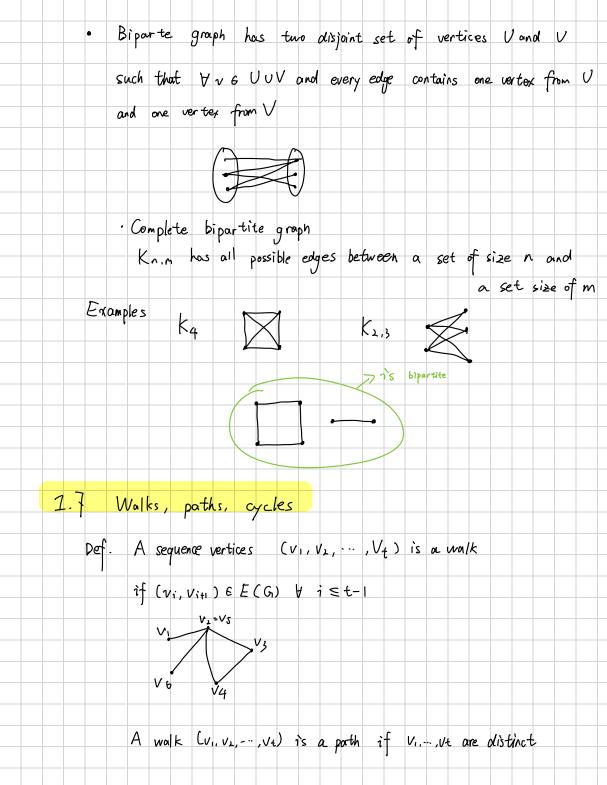
- If (u,v) 6 ECG), then v is a neighbour of u

Examples - V= set of people in room E = pairs of people who met the first time today - V = set of cities in a country E = form connection - V = users on Facebook E = friends 1.2 Graph isomormism 图目构 $VCG_1) \rightarrow VCG_2)$ $\phi: G_1 \rightarrow G_2$ is a graph isomorphism if it is a bijection from VCG,) to VCG,) and $(u,v) \in E(G_1)$ iff $(\phi(u),\phi(v)) \in E(G_2)$ $\phi(1) = \alpha \phi(2) = 0$ $\phi(3) = 0 \phi(4) = 0$ Isomorphism is an equivalence relation. Unlabelled graph = isomorphism class (equivalence of the isomorphism relation)

1.3 Adjency and incidence matrix Let G be a graph with vertex set [n] = \(1, 1, 3, \ldots n \) The adjacency matrix ACG) is an nxn matrix such that Aij = { 1 if ci.jseECG) 0 , otherwise Note that Aij = Aji so A is symmetric, and real so A has real eigenvalues 特征值 $C_{1} = A(G_{1}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$ Let VCG)= {v, , v, -- v, } and ECG) = {e, es, --- , em} Then the incidence mortrix BCG) is nxm mortrix such that $B_{ij} = \begin{cases} 1 & \text{if } v_i \in e_j \\ 0 & \text{otherwise} \end{cases}$ Observation: every column of B has two entries that are equal to 1 1.4 Degree Given a vertex v & VCG), we write NCV) for the set of neighbours of v. NCV) is called the neighbour hood of v. The degree d(v) = |N(v)|A vertex is isolated if dev = 0

d(v) is the number of 1 entries in the row corresponding to v in A (G) d(1) = 3Example d(4)=1 d(2)=2 d(5)=0 d(3)=2 $BB^{T} = D + A \quad \text{where} \quad D = \begin{pmatrix} d(1) & -1 & 0 \\ 0 & d(2) & \vdots \\ 0 & -1 & d(n) \end{pmatrix}$ Eact $(\beta \beta^{\mathsf{T}})_{ij} = \sum_{k=1}^{m} \beta_{ik} \beta^{\mathsf{T}}_{kj}$ = Shik Bjk = St 1/ {vicek, yeek} $= \begin{cases} 11(ij) \in E(G), & \text{if } i \neq j \\ O(i), & \text{if } i = j \end{cases}$ The minimum degree of a graph G is the smallest d(v) over all v&G SCG) = minimum degree △ (G) = maximum degree The average degree of G is $\overline{d}(G) = \frac{\sum_{v \in V(G)} d(v)}{v \in V(G)}$ V CG7 A graph is d-regular if dou) = d & v & VCG) Q: Is there a 3-regular graph on 9 vertices 12. Lemma: $\sum_{v \in V(G)} d(v) = 2 e (G)$

Pro	of:	Eacl	h eage	์ (น	. _(V)	€ [<u>.</u> CG) ,	contr	bute	s 2.	to	-th	e s	Sum	Σ,	d(w)	: O	nce	dcı	k)	and	_
(1		iΛ																				
1.5	Subg	raphs																					_
A graph	h Н=	(U, F	·) is																				_
if U	⊆ V	and	F ≤	E			由	₹ 9 F#	roip h	56 U	建议。 中有5	, k . 1	组成	ৰ্চ্চ ত	dge								_
Induce	d sub	graph;	For	ea	ch	U §	: vC	[6)	-the	ìn	duce	ol s	Subgro	ph	G	[v]	ìs	the	gn	nph			_
with 1	vertex	set	U	and	ಆರ	ges	set	{	e E	ΕC	G ₁) ։	e	⊆U	}									
Spanning	g subgn	арh: 2	If H	= ((',F) 2					† 6	G= CV	'€)	an	d	U= V	the	en F	1 13	-th			h in(Ģ
G =		1		}	7		in d but		d t s	pann	ing												_
			ı,		<u>ر</u>		≤ pa	nnìn	y														
			3	_	_4				ndua														_
1	6 (omple	ot o		h																		_
		Com				1 1	อก	n	1/6	erti	ces												_
		take																					
			e (-																		_
•	En	en										ede	ge S										
																							_



A cycle is a walk (V1, -- , Vt) such that V = Vt and V, -.. , Vt are distinct The length of a walk is the number of edges (counted multiple times for edges used in multiple times) in the walk. Proposition. Every walk from u to v contains a path from u to v - Proof. By induction on the length of the walk If length = 1, it's correct Take a walk (v., V2, ---, Vt) from u to v Either this is a path or 3 is, such that Vi=Vj By removing the vertices Vi+1, Vi+2, --, Vj-1 and merge Vi and Vj you got a shorter walk from u to v

Proposition 1,23 Every grouph G with minimum degree 822 contains a path of length δ and a cycle of length at least δ + 1 Proof. Let vi, ..., vk be a longest porth in Gr. Then all the neighbours of Vk must belong to vi,..., vk-1 so we have k-1 > 8 => k > 8 + 1 > 6+17.6. 飞风 这条 parth # J & (VK) > 2

FIGUR VK & S 2 P # 1 ... VK-1 度数不超过这个 Remark We have also proved that a graph with 至乡在八,.... 16-2 中选个 minimum degree 822 contains cycles of at least 那长度最大的环一定是 S-1 different lengths. This fact, and the 从从开始往前找る以外个 statement of Prop 133, are both tight; too see 连续局点,构成一个长度为 this, consider the complete graph G=K&+1 E 41 B3 BX 1.8 Connectivity 1412 12 Definition. A graph G is connected if for all pairs n, v GG, there is a path in G, from n to v

Note that it suffices for there to be a walk from ze to v connected not connected A (connected) component of G is a connected Subgraph which is maximal with respect to inclusion. We say that G is connected iff it has exactly one component. Proposition 1.39. A grouph with a vertices and medges has at least n-m connected components. 1-9 Graph operations and parameters Def. Given G = (V, E), the complement G of G is the graph on the same vertex set V and (u,v) & E(G) iff cun) & ECG)

\	A		Λ																								_
Þ			Α	\	Cl	ìφ	ve	i	\ \	G		ÌS	С		Con	nple	te		su	bg	rup	h	iλ		G		_
	1		Α	۸	ιζν	dep	enq	[<i>e</i> r]	£	set	: /	ìs	0	۱۸	<i>O</i> m	pty		ind	ucec	k	Sub	graf	oh_	ı <u>'</u> ^	G	7	_
	Λo	ta	tìon		Le	.t	w	Ce	5)	be	th	e_	num	ber	र्न	_	ver	ti c	e১	íλ	C	λ ,	cliq	<i>iv</i> e	of	2	_
					G	þ	,	MONKI	inur	1 8	ોક્ર૯																_
					Le	t.	٩	C	G,)	be	-{	he	hu	mber	۰f	V	erti'o	æs	ìn	a۱	ίγ	udepe	nder	i£	set		_
					of	G	7 4	f	mas	d mu	m ·	size.															_
	Cu	aim		Α	ve	rte	,χ <u>ς</u>	ubse	et	V	<u>c</u>	VC	G ጋ	ζí	οι	ch	que	ìλ	G	,	i\f	: () ⊆	<u>.</u> V	લ્બે		_
				sí)	(oun	ì∧d	eper	iden ⁻	£.	set	۱,	'n.	G													_
	Cor	oll	ary	•																							_
							0	ino	t	d	. ((۲)	=	w	CĞ)											
																											_
																											_
																											_
																											_
																											_

2. Trees 2.1. Trees Def: A graph having no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic graph A leaf is a vertex of degree 1 Example Forest /tree Lemma 2.3. Every finite tree with at least 2 vertices has at least two leanes Deleting a loof from an n-vertex tree produces a tree with n-1 vertices. u, w ∈ G, there's a path be tueen u and w if v in the path. $d(v) \geq 2$ but v is a leaf, d(v) #1 so v can't be in any path, for all u, w E G' so G is still connected

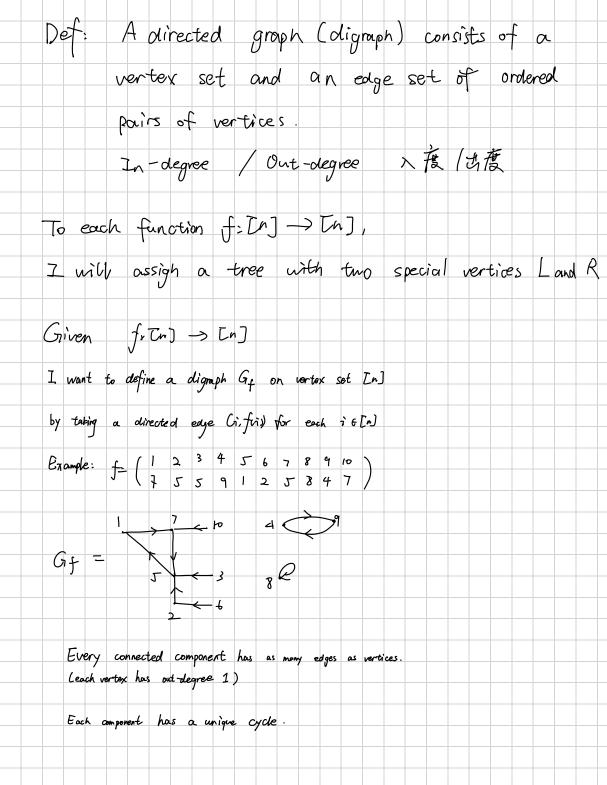
	7	2		Fa	uz	anf	d	efii	iti	on_	of		ree	S											
				Γ7				1			'														
	The	one	w,	Fo	r a	m	-ver	tex	gı	raph	G	(n	n ≥ l),	-the	f	llou	ing	Ore	e e	quil	ra ler	vt	((and
				ch	ora	cte	าโลเ	e	the	tı	rees	u	ì -t h	n	ver	tìce	(عر								
				(a)		G	ίÌ	Co	nhea	teo	l	ard		has	n	, c	ycle	کر							
				Cb ;)	G	ì	s .	Comn	ec tec	d	aı	d	ha	s	n-I	e	dge	5						
				æ)	G	ho	r.S	n-i	ec	dges	(and	no	cy	yde:	5								
				a	<i>y</i>					p		u	,v (ş V	CG	;),	-{ h	ere	i`s	ek	oo€	ly			
_						Oni	2	u,v·	- pati	n in	G														
_	De	-	An	ed	ge.	ōf	a	gna	Ph	i's	a	cut	-ed	ge_	if i	ts	de le	x tio	n (dis c	onne	ts	the	9	raph
	Lemn	a	An	edg	e c	ento	ined	ÌΛ	a c	cycle	zí	no	t a	C	it-e	dge									
		ڊ <i>ا</i>	, bu	of:						م			_	L >-			ed	n 0	(24.	,,)	Can	ho	ov	fani	ale ol
										x t				WAIC	n ,	ues	٠	"	(10)		Carl				
+										G.							C .								
					L	par	-t icu	lar,	thi	`\$ i:	s a	w	alF	ľΛ		, \	C W,	(U)							
							10	+;	j j	1	ν,	V	7	また	₹	2 3	P	atı		P,	Q	,			
									_																
						VZV	+	14	在		C 7	t, ۷)	6		/		2_							
								U	21-1		P	<i>U</i> (3 \	5	α,	43	-	10 P	- 5	F. 6	(G	۱ ۱	1 F	4 1	nalk
									1							J							J		

	De	f	2,	7.		Gi	ve,	n	a	Conn	ecte	र्व ह	jnaph	G	,	a s	pann	ing	-tree	2 T	i's	a	subj	nu ph	
						of	G	whi	ch i	is i	a 1	bree	an	d c	on-tai	ns	ever	r Ve	er ti u	es o	F G	ì.			
	Со	roll	ary	2.8	}																				
		(A)	every	ı Co	nne C	ted	9	raph	on	n b	ertic	es i	las	at k	east	n-1	edge	s a	nd c	on-tai	ns q	. sp	anning	, tr	æ
		(b)	Every	edg	e o	f a	træ	ìs	a	cut	-edg	re													
		ر (ع	Addi	ing d	en e	dge	-60	a t	Erec	Cre	octes	exo	ct ly	one	cyc	le.									
	>	([0.	(-		. [(
2.	.)	- ر	$\frac{a}{a}$	ne	7 3		7	O I	M	U O															
Qı			2.9													, ,									
			iny	Span	ining	-tm	es	ove	the	re	10	our	\	-ver	tex	loit	elle	d ,	comp	oke te	9^	yph .			
Er	V= (owb	le -3 ·	2	<u> </u>				1																	
			2	-	ر*		2		3	-	2		,	3											
	V>	4	0	degree	23		/	1					∌	4											
						•			, also					,		-					. L				
			or	- eu	*y	vert	eyc	Vers	, ove	gree	22			4	. [/	≽		U	17	tol	e I	
				•				•		-		2	€		<u>.</u>	=)2	-							
7	he	ore	m	(Ca	yley																			
	•	Tr	vere	. 0	ire		r	n-2 L		lak	el	lea	' .	tr	ees		ð	Λ	,	1-l	ær	tic	es		

Pro	5	(1)																					
	4																						
	147.		, ,						,					٠.,	,	1 11.	, ,			,			
	we	wil	rl Co	nstr	uot	a	bye	etia	n D	etu	'een	n	-ver	T O X	la	belle	a t	ree	an	ol	segu	ences	
	_													_	_								
	ot	leng	th	n-2	in	which	e	ch	ele	met		2	ľλ	Ζn	٠J .								
	Num	bers	of.	Su	ch s	sequen	es	i's	n	h-1													
			1			•																	
Del	ትነለነተ	NG Y	(Pri	for	- c	ode																
19	, , ,	AUI C		,,,,	Y																		
	10	£	Т			-1			.1						_					/			
	LE	V	-	De	a	-61	96	·	VNOS	e	ver	`le⁄	2	ec	12	26	me	υr	overe	201	set	د .	
	_																					1	
	o	ς	ize	_ ^	L -												for	- en	ang	ole,	Ε	n]	
	'																1.		_ ′			_	
	fc	T)	zí	α	seq	uence		in	S	71-2													
	J				'																		
1/	۵/۵	مار	Jota	, .	tha	leaj	_	ماردر		1-	h = 1	۸.	4	-/	C	/1		1	(Time o		ب	. 6	
		ore	ene u		UNE	1804		OU K	0,2	70.	DEI	_ / 3		me		MOLFIE	<u>-</u> 2 [CAP-10	Ï	the	, ,,,	aic
	11	r																					
	all	_+	Nis	Ve	er te	х ,	${oldsymbol{ u}}$.																
														_					_	^			
1)	ws	U	νìq	we	neig	h bou	1	ı,ν	Π.		7he	? 1	יציר	Ł	elen	nen t	, 0	f	†¢	.T)	1,7	
																			_				
d	lefi:	ned	به	5 4	the	lab	el	of	4	his	n	ei q	hbou	m.									
	١,							7				U											
T	600	}-	tem	fo	this	· v	<i>i</i> +1		7	- - (,												
•	161		0-100	4	Ortis		, ,				•												
E		. ,			,		,		-		, ,		/ (> 、				1.					
	.ven1	tual	7'	W	hen	we	hay	9	_	ver	TIC	చ	Kg	t ii	` -	the		tre	٤,	we	. St	op.	
												1-)											
	his	dē	fixes	م ـ	seg	uence	-	f C 7) ,	'n	2.	1-7											
				_	ľ	_,																	
	T=		•	_			4		3					-1				_,_					
							T						. 4	+		4				7			
				6		8	J				_	رد-,	۲-	-Տ)	c.	-27		(-4)		(-6		(-7	
												, –)	-	-/		ر ت				ره٠			

<u> </u>																			
Proposit	zion:																		_
Tha	map	7 1	, fr 7	г	N	_ l	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 	ا م	a+	20	-4			1.	l. 11.	l	7	_
me	morp)	12	a i	ગુર	CUV	r\ D	e w e	æn		nce	S 2	[a	рене	a	7	_
and	S ⁿ⁻²																		_
Proof:																			
Ву	ındu	ction	0,	n 1	n														_
		2																	_
																			_
	h>	۷,	- 1-(ow	to	get	. 0	ı tı	ree	froi	n	a	seq	uen	æ				_
			(. a	, a	۲,		, (O'n-2	.)	6	S	\h-)	>					_
																			_
	C	laim.	Z- J		SC.	Ţ) ≃	(0	λι,	02,		, 0	n-2)	the	≥η.				_
			{ c	a.,		. , OIn	{د-	ì	Š	the	2 -	et	σj	٠,	non	-l <i>e</i> a	f		
						in T													_
			Ve	r or a	د-	1/2 1													_
	Р	roof	of ,	clain	۲.	r - F	v	21	q	lea	۰, -	then	W	e (con	no{	re	nove	
										'									
	_	the i	unique	neig	rh boun	- of	V	be	tore	V	la	ا د.	hey	h	~oul	d	diša	onnect	: ب
	-4	ire g	raph).															
																			_
		Heno	e ,	ν '	اأند	not	0	ppea	r	in	th	1e	የፍ	que	PN Œ	,			_
		2f v	, is	not	a	leaf	· , .	then	ìŧ	- ha	S	at	Į,	east		tud			
																			_
		neigh b																	_
	i	Before	ne	. rem	ae	v,	W	e n	nust	- r	emo	ve	ot	ı	les-	t	one		
		1																	

neighbour of v. At that point, you add the label of v to the sequence The leaf of smallest label is the minimal element in the set $S(\{\alpha_1, \dots, \alpha_{n-2}\})$. by claim, Hence if $f(T) = (\alpha_1, ---, \alpha_{n-2})$ Then, the minimal beaf of T is the minimal element in SI fai, -- , and J, Call this NES Then, let T' = T - v Then, $f(T-v) = (\alpha_2, ..., \alpha_{n-2})$ There is an unique T' Cby induction) with fcT') = (az, --, on-) T must be formed by attaching the edge (V, a,) to T'. f=(4,1,7,1) T = (7,4,4,1,7,1) V=5 V=2, 2-7 f (1,7,1) += (4,4,1,7,1) V>4 v=3 = .7 ナ(フ,1) V= 6 +(1) V=7



Рe	lete	αll	су	cles																	
We	put	٤ .	> P	ath		n	-the	u	r-ti	ces	0	f	-bhe	ze	суа	les .					
Let	E M	be	the	2	eŁ	of	ver	tic	s in	th	e c	ycle									
	f	defi	nes	a	bì	ect	ion	froi	n /	N	to	its	elf								
	. 1		<i>(</i> (<i>(</i> 1	<i>U</i> -				1.	`			•								
	flm	=	(r.	'	r r				<i>)</i> (<	-	Vı	< V.	2۷	<	(Vĸ						
			\ J	(V ₁)	Ju	' >)	_ `	Ţ	(Vic	_										_	
	C 6	· 1			Λ.																
- ,	fcvi	, Ju	<i>/</i> >)	•	,JC	1/k)	٤١	C	r pe	V mu	texts	`on	0	1	/ı	٠ , ر	/k.				
	D (1.																		
	Put	α	Don Un																		
	fcvis	-fi	rı)	f	Luí		_	_	_												
	fcvis O		,		.017	, .					f	Ve >)								
	1										R										
											\nearrow										
																				_	
																				_	
																				_	
																				\dashv	
																				-	

Connetivity

Def. In a connected graph G, a set SCV(G) is a vertex cut (or cut) if G(S is disconnected.

Here G(S = G[V(G)(S])If $\{v\}$ is a vertex cut, then we say v is a cut vertex.

Def. A graph G is k-connected if |V(G)| > k and if S is a vertex set, then |S| > k

(i.e., for every X \(\superscript{V(G)}\) of size at most k-1, G(X is connected)

The contivity of G, denoted as K(G) is the largest k such that

Go is k-connected.

Example: k CKn)=n-1 n点完全图是 n-1 联通的

k (K_{n,m}) = min Cn, m) 完全二分图 → 移除 数量较小的-例

1-connected ⇒ connected.

only for G with [V(G)[>]

Proposition for every graph G, kCG) ≤ δCG)

Proof. We need to prove that either

We can remove at most δ(G)

we can remove at most $\delta(G)$ vertices to make the graph disconnected or $|G| \leq \delta(G) + |G|$

	Let v be a vertex of degree $\delta(G)$
	· ·
	Let S= N(v) Now G\S is not connected.
	unless there are no vertices in G outside of fu3 UN(v)
	In the better case, $ G \le 1 + \delta(G)$
Remark	Lorge minimum degree closes not imply large connetivity.
	For example, two disjoint copies of Kn
Theorem	Every graph of average degree at least 4k has a k-connected subgraph.
(Mader 1972)	
٠ 4	
proof	

3.2. edge connectivity

Def. A disconnecting set of edges is some $F \subseteq E(G)$ such that. $G \setminus F$ is not connected

Given S.7 C VCG), we write [S,T] for the

set of edges with one endpoint in Sand the other in T An edge cut is a set of edges of the form

[5,5] for some non-empty and proper SCVCG)

Remark Every edge-cut is disconnecting set.

Not every disconnecting sof is an edge cut

But every minimal disconnecting set is an edge cut.

A grouph is k-colog-connected if every disconnecting set has size at least k.

The edge connectivity of G denoted k'(G) is the longest k such that. Gr is k-edge connected (Equ , minimum size of a disconnecting set is k'(G)).

A disconnecting set of size 1 is called a bridge.

Theorem	For every graph G, we have $K(G) \leq K'(G) \leq \delta(G)$
proof	K(CG) & 8CGL
•	Υ
	You can remove all the edges incedent to SCG) to make the graph disconnected.
	k(G) ∈ k' (G). s = s
	€t edges
	C t enges
	Ϋ́

For a groph G, the line graph LLG) has vertex set ECG) with e and f adjacent in LCG) if they share a vertex in VCG) What is a path in LCG)? e, e, , ..., e, EECG) s.t. e, NeiH + & You end up with a path from e_i to e_k . Corollary Let u and v be vertices in G (i) If (u,v) & E, then the min number of vertices distinct from u and v separating from u to v is equal to the max number of internally vertex-disjoint n-v paths in G. 若(U,V) € E, U到V 的 min 内部顶点割 大小 = max U到V 顶点不交路径, 数量. 删除这些点, 化和心断开 proof: S=N(u) T=N(v) apply Menger's Theorem. (ii) The min number of edges separating un from v in G is equal to the max number of edge-disjoint paths between u and v 从孔到V自 min 边割 = max 孔到V 顶点不交路径、数量 Global Menger Theorem (a) A graph is k-connected iff it contains k internally vertex-disjoint paths between any two vertices (and has at least 2 vertices). (b) A graph is k-edge-connected iff between any distinct u,v there are k edge-disjoint porths. (C) If there are k internal

A trail is a walk with no repeated edges. An Eulerian trail in a (multi)graph G is a walk in G possing through every edge exactly once. If this walk is closed, it is called an Eulerian tour. A connected (multi)graph has an Eulerian town iff each vertex has even degree Every maximal trail is on even multigraph, is a closed trai

Proposion If G is Hamiltonian, then for any non-empty SCVCG) GIS has at most 1st connected components Collery If a (connected) Hamiltonian bipartite graph has bipartation A and B, then |A| = |B|Let S=A Then G\S is independent set (empty graph) of size of IB Proof By proposition, $|B| \le |S| = |A| \implies By \text{ symmetry } |A| \le B \implies |A| = |B|$ Remark The condition in the proposition is not sufficient. Theorem If G is an n-vertex graph with $F(G) \ge \frac{n}{2}$ and $n \ge 3$, then G is Hamiltoian.